A Chemical Switch for the Modulation of the Functional Activity of Higher Homologues of Histamine on the Human Histamine H₃ Receptor: Effect of Various Substitutions at the Primary Amino Function

Marinella Govoni, Herman D. Lim, Dris El-Atmioui, Wiro M. P. B. Menge, Henk Timmerman, Remko A. Bakker, Rob Leurs, and Iwan J. P. De Esch*

Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Received May 8, 2005

In an effort to establish the structural requirements for agonism, neutral antagonism, and inverse agonism at the human histamine H₃ receptor (H₃R) we have prepared a series of higher homologues of histamine in which the terminal nitrogen of the side chain has been either mono- or disubstituted with several aliphatic, alicyclic, and aromatic moieties or incorporated in cyclic systems. The novel ligands have been pharmacologically investigated in vitro for their affinities on the human H₃R and H₄R subtypes by radioligand displacement experiments and for their intrinsic H₃R activities via a CRE-mediated β -galactosidase reporter gene assay. Subtle changes of the substitution pattern at the side chain nitrogen alter enormously the pharmacological activity of the ligands, resulting in a series of compounds with a wide spectrum of pharmacological activities. Among the several neutral H₃R antagonists identified within this series, compounds **2b** and **2h** display an H₃R affinity in the low nanomolar concentration range (pK_i values of 8.1 and 8.4, respectively). A very potent and selective H₃R agonist (**11**, pEC₅₀ = 8.9, $\alpha = 0.94$) and a very potent, though not highly selective, H₃R inverse agonist (**2k**, pIC₅₀ = 8.9, $\alpha = -0.97$) have been identified as well.

Introduction

The biogenic amine histamine exerts its multiple biological activities through the activation of at least four distinct histamine receptors, i.e., H_1 , H_2 , H_3 , and H_4 receptors, $^{1-4}$ all belonging to the superfamily of heptahelical (7TM) G-protein coupled receptors.

The histamine H_3 receptor (H_3R) was discovered in 1983 by Arrang and co-workers as a presynaptic autoreceptor,⁵ and the gene was successively cloned in 1999 by Lovenberg and colleagues.³ Tissue distribution analysis indicated that the expression of the receptor is predominantly restricted to the brain.⁶ The H₃R does not only mediate the inhibition of synthesis and release of histamine from histaminergic neurons via a negative feedback loop,^{7,8} but also exerts modulatory effects on other neurotransmitter systems, e.g. the cholinergic,9,10 dopaminergic,¹¹ noradrenergic,¹² and serotoninergic¹³ systems, in both the central and peripheral nervous systems. It has been recognized that the H_3R is a potential therapeutic target.^{14–16} H₃R antagonists have been proposed to be potential drugs for the treatment of several CNS disorders, such as attention-deficit hyperactivity disorder (ADHD),^{17,18} Alzheimer's disease,¹⁹ epilepsy, 20-22 schizophrenia, 22,23 and obesity, 24-26 whereas the therapeutic potential of H₃R agonists has been shown for myocardial ischemia,27 inflammatory28 and gastric acid related diseases,²⁹ migraine, and sleep disorders.³⁰

The constitutive activity of several 7TM receptor systems has been investigated within the past decade.^{31–36} For a long time it was not known whether this phenomenon existed only in cells overexpressing (mutant) GPCRs or also occurred in vivo. Constitutive activity has been shown recently for both the histamine H₁ and H₂ receptors.^{37,38} Our group reported that the therapeutically important H₁ and H₂ receptor antagonists act,

(CH₂)_nNH₂

Figure 1. Structures of 4-[1*H*-imidazol-4-yl]butylamine (imbutamine, **1a**), 5-[1*H*-imidazol-4-yl]pentylamine (impentamine, **2a**), [5-(1*H*-imidazol-4-yl)pentyl]isopropylamine (**2d**), clobenpropit, GT-2331 (cipralisant, Perceptin), and proxyfan.

in fact, as inverse agonists, but we also identified neutral antagonists for both receptors.^{37,39} Histaminergic neurotransmission in rodent brain was shown to be regulated by constitutively active H₃Rs in vitro as well as in vivo,⁴⁰ and our group also demonstrated that the human and rat H₃Rs stably expressed in SK-N-MC cells^{3,6} show a high level of constitutive activity.^{41,42} This led to the identification of several standard H₃R antagonists (thioperamide and clobenpropit) as inverse agonists in this cell system. Moreover, burimamide and impentamine (Figure 1), previously identified as H₃R antagonists, ^{5,43,44} behave as H₃R agonists at both recombinant H₃Rs (human and rat). We also showed that in a small series of impentamine analogues we were able to manipulate the intrinsic activity (α) by substitution of the amino group.⁴¹

In an attempt to establish a correlation between the structure of the ligands and their functional activity at the human H_3R ,

^{*a*} Reagents: (a) *n*-BuLi, THF, -70 °C; (b) 2-(*ω*-iodoalkyloxy)tetrahydropyran; (c) HCl, rt; (d) Swern oxidation; (e) R₁R₂-amine, AcOH, NaBH(OAc)₃, DCE, rt (method B, reductive amination); (f) R₁R₂-amine, 100 °C (method A); (g) 30% HBr or 37% HCl, reflux (method D). R₁R₂-amines are given in Tables 1 and 2.

we report here the synthesis, affinity, and intrinsic H_3R activity of a variety of analogues of imbutamine and impentamine (**1a** and **2a**, Figure 1) in which the primary amino function has been mono- or disubstituted with several aliphatic and aromatic moieties. All the ligands were additionally screened for their affinities at the human histamine H_4 receptor (H_4R) subtype in order to evaluate H_3 versus H_4 receptor selectivity of the compounds.

Chemistry

Aminoalkylimidazoles **1c,m** and **2c,m** were prepared by lithiation of a suitable 1,2-diprotected imidazole 4^{45} and subsequent treatment with 2-(ω -iodoalkyloxy)tetrahydropyrans to give compounds **5** and **6** in moderate yields (35–40%, Scheme 1). The ω -hydroxy group of **5** and **6** was converted into an aldehyde via a Swern oxidation^{46,47} followed by reductive amination⁴⁸ with the appropriate amine in the presence of

Scheme 2. Synthesis of Compounds 1b,d-l,n-p and 2b,e-h,j-l,n-p^a

sodium triacetoxyborohydride and cleavage of the dimethylsulfamoyl protecting group to give compounds **1c,m** and **2c,m** in moderate to good yield (44–70%). Alternatively, the ω -chloro group of **9**⁴⁴ was converted either into an isopropylamino group or into a cyclohexylamino group via heating with isopropylamine and cyclohexylamine, respectively, to give compounds **11d,i**. Deprotection yielded compounds **2d,i**.

Aminoalkylimidazoles 1b,d-l,n-p and 2b,e-h,j-l,n-pwere prepared according to the synthetic pathway shown in Scheme 2. Methanolysis of δ -valerolactone and ϵ -caprolactone followed by Swern oxidation of esters 12 and 13 afforded aldehydes 14 and 15, which were readily converted into imidazoles using TosMIC chemistry.49 The intermediate 4-tosyloxazolines 16 and 17 were treated with ammonia in ethanol under pressure, affording a mixture of amide and methyl and ethyl ester which were converted into the carboxylic acid via acidic hydrolysis and then re-esterified to give esters 18 and 19 in good yields (82% and 51%, respectively). Protection of the imidazole ring with a trityl group, followed by reduction of esters 20 and 21 with lithium aluminum hydride and Swern oxidation of the alcohols 22 and 23, yielded the key intermediates 24 and 25 (49% and 70% yield). Reductive amination with a suitable amine and subsequent deprotection afforded the final compounds 1b,d-l,n-p and 2b,e-h,j-l,n-p, in variable isolated yields (17-95%).

Pharmacology

Radioligand Displacement Studies. Homogenates of SK-N-MC cells, stably expressing either the human H_3R^3 or the human H_4R ,⁵⁰ were used for determining ligand affinities for the H_3R and H_4R , respectively, as previously described.⁵¹ Cell homogenates of H_3R -expressing cells (475 ± 32 fmol/mg of protein) were incubated for 40 min at 25 °C with 0.9–1.1 nM [³H]- N^{α} -methylhistamine (82 Ci/mmol) in 50 mM sodium phosphate buffer (pH 7.4) with or without competing ligands; cell homogenates of H_4R -expressing cells (620 ± 44 fmol/mg of protein) were incubated for 60 min at 37 °C with 9–11 nM [³H]histamine (23.2 Ci/mmol) in 50 mM Tris HCl (pH 7.4),

^{*a*} Reagents: (a) MeOH, H₂SO₄, reflux; (b) Swern oxidation; (c) TosMIC, NaCN, abs EtOH; (d) NH₃/EtOH, 120–140 °C, 10 atm; (e) HCl, reflux; (f) EtOH, H₂SO₄, reflux; (g) triphenylmethyl chloride, triethylamine, DCM, rt; (h) LiAlH₄, THF, rt; (i) Swern oxidation; (j) R₁R₂-amine, AcOH, NaBH(OAc)₃, DCE, rt (method B, reductive amination); (k) 1 M HCl or 1 M HBr, reflux (method C). R₁R₂-amines are given in Tables 1 and 2.

with or without competing ligands. Incubations were terminated by rapid dilution and subsequent filtration over Whatman GF/C filters pretreated with 0.3% polyethyleneimine and the residue was subsequently washed using ice-cold wash buffer (H₃R: 25 mM Tris HCl, 145 mM NaCl, pH 7.4 at 4 °C; H₄R: 50 mM Tris HCl, pH 7.4 at 4 °C). The radioactivity retained on the filters was measured by liquid scintillation counting. Nonspecific binding was determined with 1 μ M clobenpropit as competing ligand. Competition isotherms were evaluated by a nonlinear, least squares curve-fitting using GraphPad Prism (GraphPad Software, Inc., San Diego, CA).

Colorimetric cAMP Assay. Colorimetric cAMP assays were performed as previously described.⁵¹ Briefly, SK-N-MC cells stably expressing the human H₃R³ and a cyclic AMP responsive element (CRE)- β -galactosidase reporter gene were grown overnight in 96-well plates before the assay. To start the assay, the cells were incubated for 6 h with 1 μ M forskolin and respective ligands in a humidified incubator at 37 °C. Thereafter, the medium was aspirated and cells were incubated overnight at room temperature with 100 μ L of assay buffer [100 mM NaH₂PO₄, 100 mM Na₂HPO₄, pH 8, 2 mM MgSO₄, 0.1 mM MnCl₂, 0.5% Triton, 40 mM β -mercaptoethanol, and 4 mM *o*-nitrophenyl- β -D-galactopyranoside (ONPG)]. The absorbance at 405 nm was determined by using a Victor² plate reader (Perkin-Elmer).

Analytical Methods. Protein levels were determined spectrophotometrically by a Packard Argus 400 microplate reader according to the method of Bradford,⁵² using bovine serum albumin as a standard. All data shown are expressed as a mean \pm SEM.

Results and Discussion

A previous study from our group identified compound **2d** (Figure 1 and Table 2), an impentamine analogue with an isopropyl group at the amino group of the side chain, as a neutral H_3R antagonist⁴¹ in SK-N-MC cells stably transfected with the human H_3R .³ In the same study it was also shown that the modification of the primary amino group of the H_3R agonist impentamine, via substitution or incorporation in a piperidine ring, dramatically affected the pharmacological activity of the ligands, resulting in a series of compounds spanning the whole spectrum of pharmacological activities.

The amine function of impentamine is thought to interact with the aspartate residue Asp^{114} in transmembrane domain 3, which is highly conserved in the family of biogenic amine receptors.^{53,54}

In view of the fact that this series of ligands may be of great help to understand the mechanism of receptor (in)activation, we have prepared a series of imbutamine and impentamine analogues in which the primary amino function has been monoor disubstituted with either a variety of aliphatic (1b-g,l,m, 2b-g,l,m), alicyclic (1h-j, 2h-j), or aromatic moieties (1k, 2k) or incorporated in cyclic systems (1n-p, 2n-p).

As shown in Table 1, substitution of the N^{α} -position of imbutamine (**1a**) caused in general a decrease in the H₃R affinity, with the exception of compounds **1f**, bearing an isobutyl substituent, and N^{α} , N^{α} -dimethylimbutamine (**1l**), in which the terminal amino function is dimethylated. With a pEC₅₀ of 8.9, **1l** is the most potent ligand of this series and it displays a nearly full agonistic intrinsic activity ($\alpha = 0.94$) on the human H₃R. This behavior has already been observed in the case of histamine, where mono- or dimethylation of the amino function of the side chain results in agonists that are more active than histamine at the H₃R.^{5,55} Surprisingly, the dimethylated analogue

Table 1. Chemical Structures and Pharmacological Properties of Compounds 1a-p for the Human H₃ (hH₃R) and H₄ (hH₄R) Receptors^{*a*} (CH₂)₄NR₁R₂

/=	-	$\langle \rangle$
/		1
HN		N

				hH₄R:		
compd	R_1	R_2	pKi ^b	pEC50 ^b	$\alpha^{b,c}$	pK_i
1a	Н	Н	8.4 ± 0.1	8.3 ± 0.1	0.98 ± 0.02	8.0 ± 0.1
1b	Н	Et	7.6 ± 0.1	7.6 ± 0.1	0.73 ± 0.10	7.0 ± 0.1
1c	Н	n-Pr	8.1 ± 0.1	7.8 ± 0.1	0.45 ± 0.07	7.3 ± 0.1
1d	Н	i-Pr	7.1 ± 0.1	d	0.10 ± 0.08	6.7 ± 0.1
1e	Н	n-Bu	8.2 ± 0.1	8.3 ± 0.1	0.55 ± 0.09	7.2 ± 0.1
1f	Н	i-Bu	8.5 ± 0.1	8.1 ± 0.1^{e}	-0.14 ± 0.10	7.1 ± 0.1
1g	Н	t-Bu	6.2 ± 0.1	d	0.01 ± 0.06	6.1 ± 0.1
1h	Н	cyclopentyl	7.4 ± 0.1	f	d	7.4 ± 0.1
1i	Н	cyclohexyl	7.5 ± 0.1	f	d	7.0 ± 0.1
1j	Н	cycloheptyl	7.4 ± 0.1	d	0.00 ± 0.05	7.3 ± 0.0
1k		p-Cl-benzyl	7.8 ± 0.1	f	d	7.7 ± 0.1
11	Me	Me	8.5 ± 0.1	8.9 ± 0.1	0.94 ± 0.04	6.1 ± 0.1
1m	Et	Et	7.0 ± 0.1	d	0.07 ± 0.08	6.5 ± 0.1
1n	-(CH ₂) ₄₋	7.4 ± 0.1	7.4 ± 0.1	0.47 ± 0.11	6.3 ± 0.1
10	-(CH ₂) ₅₋	7.7 ± 0.1	7.5 ± 0.1	0.64 ± 0.04	6.4 ± 0.2
1p	-(CH ₂) ₆₋	7.4 ± 0.1	7.3 ± 0.2	0.35 ± 0.07	6.3 ± 0.1

^{*a*} The values are expressed as means \pm SEM of separate experiments, each performed in triplicate, unless indicated otherwise. ^{*b*} N > 3. ^{*c*} $\alpha =$ intrinsic activity value. ^{*d*} Could not be estimated. ^{*e*} pIC₅₀ value. ^{*f*} Biphasic behavior (partial agonism up to 1 μ M, non-H₃R-mediated effects at 10 and 100 μ M).

Table 2. Chemical Structures and Pharmacological Properties of Compounds 2a-p for the Human H₃ (hH₃R) and H₄ (hH₄R) Receptors^{*a*}

$(CH_2)_5NR_1R_2$	
HN	

			\sim			
				hH₄R:		
compd	\mathbf{R}_1	R_2	pK _i ^b	pEC50 ^b	$\alpha^{b,c}$	p <i>K</i> i
2a	Н	Н	8.3 ± 0.1	8.3 ± 0.1	0.71 ± 0.05	6.6 ± 0.1
2b	Н	Et	8.1 ± 0.1	d	0.11 ± 0.09	6.5 ± 0.1
2c	Н	n-Pr	8.3 ± 0.1	8.0 ± 0.1	0.44 ± 0.11	6.8 ± 0.1
2d	Н	i-Pr	7.9 ± 0.1	7.4 ± 0.1^{e}	-0.55 ± 0.11	6.9 ± 0.1
2e	Н	n-Bu	8.4 ± 0.1	8.3 ± 0.1	0.55 ± 0.09	6.7 ± 0.1
2f	Н	i-Bu	8.8 ± 0.1	8.1 ± 0.2	0.35 ± 0.07	6.9 ± 0.1
2g	Н	t-Bu	7.4 ± 0.1	d	0.04 ± 0.05	7.2 ± 0.1
2 h	Н	cyclopentyl	8.4 ± 0.1	d	0.02 ± 0.08	7.4 ± 0.1
2i	Н	cyclohexyl	8.0 ± 0.1	7.9 ± 0.1^{e}	-0.51 ± 0.12	7.4 ± 0.1
2j	Н	cycloheptyl	8.5 ± 0.1	8.0 ± 0.1^{e}	-0.65 ± 0.03	7.3 ± 0.1
2k		p-Cl-benzyl	8.6 ± 0.1	8.9 ± 0.2^{e}	-0.97 ± 0.01	7.2 ± 0.2
21	Me	Me	7.8 ± 0.2	7.5 ± 0.2	0.68 ± 0.08	6.3 ± 0.1
2m	Et	Et	7.2 ± 0.1	d	0.06 ± 0.02	6.2 ± 0.1
2n	-($CH_{2})_{4-}$	7.5 ± 0.1	7.5 ± 0.1	0.32 ± 0.07	6.1 ± 0.1
20	-(CH ₂) ₅₋	8.1 ± 0.1	7.7 ± 0.1	0.46 ± 0.08	6.5 ± 0.1
2p	-(CH ₂) ₆₋	7.8 ± 0.1	7.3 ± 0.2	0.22 ± 0.07	6.8 ± 0.1

^{*a*} The values are expressed as means \pm SEM of separate experiments, each performed in triplicate, unless indicated otherwise. ^{*b*} N > 3. ^{*c*} α = intrinsic activity value. ^{*d*} Could not be estimated. ^{*e*} pIC₅₀ value.

of impentamine, **21** (Table 2), shows instead reduced affinity and potency, with a pK_i value of 7.8 and a pEC₅₀ value of 7.5, as well as a diminished intrinsic H₃R activity, resulting in partial H₃R agonism ($\alpha = 0.68$). It must be noted, however, that the parent compound **2a**, opposite to what was observed in our previous study, where it behaved as a nearly full agonist ($\alpha =$ 0.9),⁴¹ is now found to be also a partial agonist ($\alpha = 0.71$), with almost the same intrinsic activity as **21**. A discussion of these differences is described below. A further increase of the steric hindrance on the primary amine, as achieved via introduction of a diethylamino group, is generally not well-tolerated, as shown by the decreased H₃R affinities of compounds **1m** and **2m**. Parallel to the decrease in the H₃R affinity, a diminished H₃R intrinsic activity is observed; in fact, both ligands are neutral H₃R antagonists.

Figure 2. The effects of several selected compounds on the basal signaling of the H₃R, as measured by CRE-mediated β -galactosidase reporter gene assay in forskolin-stimulated (1 μ M) SK-N-MC cells. (A) Dose-response curves of the full H₃R agonist 1a (\blacksquare , imbutamine), the partial H₃R agonists 1b (\blacktriangle) and 1c (\triangledown), the neutral H₃R antagonist 1g (\blacklozenge), and the partial inverse H₃R agonists 1f (\bigcirc) (see also Table 1). (B) Dose-response curves of the partial H₃R agonists 2a (\blacksquare , impentamine) and 2c (\blacktriangle), the neutral H₃R antagonist 2h (\diamondsuit), the partial inverse H₃R agonist 2d (\triangledown), and the full inverse H₃R agonist 2k (\bigcirc) (see also Table 2). Representative dose-response curves of the full H₃R agonist thioperamide (\Box) are shown (A and B). Data are normalized to the basal signaling observed in the assay (set to 100%).

In the impentamine series shown in Table 2, compounds 2c, 2e, 2f, 2h, 2j, and 2k display an H₃R affinity comparable to that of the parent compound 2a or slightly increased.

Upon comparing imbutamine and impentamine derivatives, it can be appreciated that, with the exception of the parent compounds (1a, 2a) and those bearing a dimethyl substitution (11, 21), the H_3R affinities are higher for the impentamine analogues. Alkylation in the N^{α} -position of **1a** and **2a** with longer alkyl groups, such as ethyl, *n*-propyl, or *n*-butyl, has only limited effect on the H₃R affinity in both series (1b,c,e and 2b,c,e), while ramification to isopropyl (1d, 2d) or *tert*-butyl (1g, 2g) is detrimental for H₃R affinity (see Tables 1 and 2). Alkylation of the histamine side-chain terminal nitrogen with bulky groups leads to a loss of H₃R intrinsic activity, generating partial agonists⁵⁶ or antagonists.⁵⁷ Similarly, alkylation of imbutamine and impentamine with the above-mentioned residues, e.g. ethyl, n-propyl, isopropyl, n-butyl, and tert-butyl, causes a decrease in the intrinsic activity of the compounds (Figure 2), therefore generating partial agonists (1b,c,e and 2c,e) or neutral antagonists (1d,g and 2b,g, Tables 1 and 2). Remarkably, compound 2d (Table 2), also bearing an isopropyl moiety, which was identified as a neutral antagonist ($\alpha = -0.10$ \pm 0.10) in our previous study,⁴¹ in the present research behaves as a partial inverse agonist ($\alpha = -0.55$). However, a different assay system has been used in the current study that is more sensitive than the classical cAMP measurements used in the previous study.⁴¹ Thus, enhancement of the van der Waals volume of the N^{α} -position diminishes agonist properties and increases antagonistic activity, but no definite relation between the substituting alkyl residue and the intrinsic H₃R activity of the compound can be derived. Surprisingly, ramification to isobutyl (1f and 2f) generates compounds with higher H_3R affinity; in fact, compound **2f** (Table 2), with a pK_i of 8.8,

Figure 3. (A) Rightward shift of concentration–response curves of imbutamine (1a) in the presence of increasing concentrations of N^{α} -cyclopentylimpentamine (2h) determined by the inhibition of the CRE-stimulated β -galactosidase transcription in SK-N-MC cells stably expressing the human H₃R. (B) The log of the (dose ratio – 1) at each concentration of antagonist was plotted versus the log of 2h concentration. The pA₂ value was determined from the *x*-intercept on the linear Schild regression plot and was in this particular experiment 8.1. The data points represent means ± SEM of triplicate determinations from one representative experiment.

exhibits the highest H₃R affinity among this series of ligands. Unfortunately, no definite correlation between the alkyl residue and the intrinsic H₃R activity could be observed. In fact, **1f** shows partial inverse agonism ($\alpha = -0.14$, Table 1), whereas **2f** is a partial agonist ($\alpha = 0.35$, Table 2).

Substitution with alicyclic residues (cyclopentyl, cyclohexyl or cycloheptyl) exerts a different behavior for imbutamine and impentamine derivatives; in the former, alkylation with either of the moieties consistently produces a 10-fold decrease in the H₃R affinity (1h-j, Table 1), whereas in the latter H₃R affinities are not significantly altered (2h-j, Table 2). As already seen in case of alkylation with aliphatic residues, insertion of alicyclic residues results in a loss of agonistic activity compared to the unsubstituted compounds; in fact, 1j and 2h are neutral antagonists, whereas 2i and 2j are partial inverse agonists.

In view of its nanomolar affinity for the H₃R ($pK_i = 8.4$) and lack of intrinsic H₃R activity ($\alpha = 0.02 \pm 0.08$), N^{α} cyclopentylimpentamine (**2h**, Table 2) can be considered an interesting pharmacological tool. As depicted in Figure 3, ligand **2h** effectively antagonizes the response to the full agonist imbutamine (**1a**, Figure 3), yielding a pA₂ value of 8.1.

Ligands **1h** and **1i** (Table 1), respectively alkylated with a cyclopentyl and a cyclohexyl moiety, are also showing a diminished H₃R agonistic activity; in fact, they behave as partial agonists at concentrations up to 1 μ M, but they turn into apparent (partial) inverse agonists at higher concentrations (10 and 100 μ M). This "biphasic" behavior is probably due to non-H₃R-mediated effects at high concentrations that interfere with an accurate estimation of the intrinsic H₃R activity of the aforementioned compounds in our cell-based assay. Further experiments showed indeed that responses to **1h** and **1i** in SK-N-MC cells transfected with the human H₃R could not be antagonized by the neutral H₃R antagonist **2h** (data not shown).

Introduction of para-substituted phenyl rings has proven to be a successful strategy to improve affinity and/or potency of the compounds, as seen with the very potent H₃R antagonist clobenpropit (Figure 1).^{1,58} However, introduction of a *p*chlorobenzyl moiety on the primary amino function of **1a** and **2a**, yielding ligands **1k** and **2k** (Tables 1 and 2), results in an increased affinity only in the case of the impentamine derivative **2k** (about 4-fold more active than the parent compound **2a**, Table 2). The potency of ligand **2k** is also enhanced (pEC₅₀ = 8.9), but remarkably a huge decrease in the intrinsic H₃R activity of the compound can be observed as well, leading to the only full inverse agonist ($\alpha = -0.97$) identified among the ligands investigated in this study.

Incorporation of the N^{α} -amino group of histamine into a pyrrolidine nucleus led to a compound with reduced potency and a maximal response that was only 56% with respect to histamine, implying that this compound is a partial H₃R agonist.⁵⁹ Similarly, incorporation of the amino group of imbutamine and impentamine in a pyrrolidine (1n, 2n), piperidine (10, 20), or azepane (1p, 2p) ring generates ligands with reduced potency and intrinsic H₃R activity (Tables 1 and 2), all the compounds being partial agonists with α values ranging from 0.22 (2p) to 0.64 (1o). Ligand 2o (Table 2), a partial agonist in this study, displaying an α value of 0.46, was previously found to behave as a full agonist ($\alpha = 1.00$).⁴¹ Parallel to a diminished H₃R potency and intrinsic activity, these ligands also show H₃R affinities that are decreased by 4–10fold, excluding compound 20, for which the decrease in affinity was less marked (pK_i of 8.1 vs a pK_i value of 8.3 for **2a**). The only apparent relation between the structures of the compounds and their activities is that affinity and potency values are slightly higher for the impentation derivatives 2n-p (Table 2) than for ligands 1n-p (Table 1), while the opposite behavior could be observed for the intrinsic activity, compounds **1n-p** displaying higher partial agonistic activity over 2n-p.

When compared to our previous study,⁴¹ three of the six compounds analyzed in that research showed a different intrinsic H₃R activity. More precisely, impentamine (**2a**) and N^{α} -pyrrolidine-impentamine (**2o**) behaved in the present study as partial agonists (α values respectively 0.78 and 0.46, Table 2) whereas they were identified as full agonists ($\alpha = 0.9$ and 1.00) in the previous one. N^{α} -isopropylimpentamine (**2d**), earlier recognized as a neutral antagonist, now behaved as a partial inverse agonist ($\alpha = -0.55$, Table 2). The other three (**2i,k,l**, Table 2) showed instead values comparable to those formerly measured.

However, it is important to point out that impentamine was initially recognized as an H_3R antagonist⁴⁴ and subsequently proved to act also as a partial agonist, depending on the test system.⁶⁰

More recently, Fox and co-workers⁶¹ have reported the partial agonistic behavior of GT-2331 (cipralisant, Perceptin, Figure 1), so far presumed to be an H_3R antagonist.⁶² Furthermore, Gbahou et al.⁶³ identified proxyfan (Figure 1) as a protean H_3 receptor ligand with the ability to display agonism, neutral antagonism, and inverse agonism, depending on the test system. Thus, the complex pharmacodynamic profile of the discussed compounds may be caused by different assay and species differences. The distribution of distinct receptor active states or alternative coupling routes in different cells or tissue may also play a role.

Recently, another histamine receptor subtype, the H_4R , was cloned by several groups and identified as a G-protein coupled receptor.^{4,50,64–68} The H_4R has significant sequence homology

(about 40%) to the H₃R cDNA,⁶⁷ and it shares about 60% sequence identity with the H₃R in the transmembrane regions,⁵⁰ suggesting that the two receptors might have a similar mode of ligand recognition. Although the development of selective H₃R ligands is not the primary goal of this study, the synthesized compounds were additionally screened for their affinity for the human H₄R in order to investigate the H₃/H₄ receptor selectivity of the synthesized compounds. The affinity of most of the compounds is lower for the human H₄R than for the human H₃R (Tables 1 and 2). Impentamine (2a) and its ethyl (2b), *n*-butyl (2e), and isobutyl (2f) derivatives show a high selectivity for the H₃R over H₄R, the difference in affinity between the two receptors ranging between 1.6 and 1.9 log units (Table 2), but the best H₃R selectivity among the synthesized compounds is displayed by N^{α} , N^{α} -dimethylimbutamine **11** (Table 1), with 2.4 log units difference between the two receptors' affinities $(pK_i = 8.5 \text{ on } H_3R \text{ versus } 6.1 \text{ on } H_4R)$. Excluding ligands **1a.d.g.h.j.k** (Table 1) and **2g** (Table 2), which have almost the same affinity for both receptors and therefore lack H₃/H₄ receptor selectivity, all the other compounds of the series bear a selectivity that ranges between 0.5 and 1.5 log units for the H_3 over the H_4 receptor (Tables 1 and 2).

Conclusions

The synthesis of a series of imbutamine and impentamine analogues in which the primary amino function has been monoor disubstituted with several aliphatic, alicyclic, and aromatic moieties, as well as incorporated in cyclic systems, has been reported in this study. The novel ligands were pharmacologically investigated in vitro for their affinities on the human H_3R and H_4R subtypes and for their intrinsic H_3R activities.

Modification of the primary amine function of **1a** and **2a** dramatically affects the H_3R binding and functional properties of the compounds. Subtle changes in the substitution of the side chain nitrogen have great influence on the H_3R pharmacological activities of the ligands: agonists, antagonists, and inverse agonists are in fact present in this series of compounds. Previously, we had indeed proposed that the side chain amine function of impentamine (**2a**) interacts with the aspartate residue Asp¹¹⁴ in transmembrane domain 3.⁵³ We hypothesized that rotameric changes of the side chain of this amino acid residue could influence the agonistic properties of the interacting ligands.⁴¹

However, substitution with the same moiety on the two parent compounds (1a and 2a) yields ligands with different structureactivity relationships (SAR) at the H₃R, depending on the length of the side chain. This is possibly due to the existence of diverse binding pockets and a different set of receptor site points available for interaction with derivatives of 1a and 2a that are very much dependent on the distance between the basic nitrogen of the side chain and the imidazole nucleus, as well as on the kind of substituting moiety present on the aforementioned basic nitrogen. Our group already proposed that the differences in SAR observed for the lipophilic tails of different classes of H₃R antagonists could be explained by the existence of two distinct lipophilic pockets available for antagonist binding.⁵³ The obtained qualitative model for the H₃R revealed a molecular determinant explaining intrinsic activity, as the conformation of the aspartic acid residue differs according to whether it is binding to agonists or antagonists.53

Several neutral H_3R antagonists (**1d**,**g**,**j**,**m** and **2b**,**g**,**h**,**m**) have been identified within this series, but also a very potent and selective H_3R agonist (**1l**) and a very potent, though not highly selective, H_3R inverse agonist (**2k**). It has proven very difficult to draw SAR among these series of ligands, since there does not seem to be a clear correlation between the modifications applied to the side chain nitrogen and the different H₃R affinities and functional activities. Very small modifications can lead to dramatic changes in the affinity as well as in the functional activity of the generated ligands. In this perspective, the side chain nitrogen can be seen as a very subtle chemical switch for the modulation of the functional activity of higher homologues of histamine on the human H₃R.

The target compounds were additionally investigated for their affinities on the human H₄R subtype in order to check selectivity, which led to the identification of N^{α} , N^{α} -dimeth-ylimbutamine (11), showing an H₃R/H₄R affinity ratio of 2.4 log units, as a potent and selective agonist for the human H₃R.

The H₃R is one of the few GPCRs that has been shown to modulate important physiological processes by means of its constitutive activity.⁴⁰ This underlines not only the impact of assay setup and species differences when evaluating the behavior of ligands on the histamine H₃R but also the usefulness of the compounds presented in this study as pharmacological tools. In view of the many potential therapeutic applications of H₃R antagonists,^{16,73,74} the availability of high-affinity neutral H₃R antagonists such as N^{α} -ethylimpentamine **2b** and N^{α} -cyclopentylimpentamine **2h** as well as of the potent inverse H₃R agonist N^{α} -*p*-chlorobenzylimpentamine **2k** may help in unraveling the effects and clinical applications of inverse H₃R agonists or neutral H₃R antagonists.

Experimental Section

General Procedures. Reagents were obtained from commercial suppliers and used without further purification. Solvents used were either AR or HPLC grade. Dry THF and dichloromethane were freshly distilled from LiAlH4 and CaH2, respectively. Compounds 1a and 2a were obtained from our own laboratory stock.⁴⁴ The 2-(ω -iodoalkyloxy)tetrahydropyrans were prepared by refluxing the corresponding 2-(ω -chloroalkyloxy)tetrahydropyrans⁶⁹ with 1.1 equiv of sodium iodide in acetone and purified by distillation.^{70,71} Melting points were measured on an Electrothermal IA 9200 apparatus. ¹H NMR spectra were recorded on a Bruker AC-200 (200 MHz) spectrometer. Chemical shifts are given in ppm using the residual undeuterated solvent as reference. Elemental analyses were performed by the Mikroanalytisches Labor Pascher, Remagen-Bandorf, Germany. Flash chromatography was performed on J.T. Baker Kieselgel 60. All reactions were performed under an atmosphere of dry nitrogen.

5(4)-(4-Hydroxybutyl)imidazole-1-sulfonic Acid Dimethylamide (5). 2-(tert-Butyldimethylsilanyl)imidazole-1-sulfonic acid dimethylamide 4^{45} (8.59 g, 0.030 mol) was dissolved in THF (100 mL) and cooled to -70 °C. n-Butyllithium in hexane (20.35 mL, 0.033 mol) was added dropwise at -65 °C. After 30 min, a solution of 2-(4-iodobutyloxy)tetrahydropyran (8.42 g, 0.030 mol) in THF was added dropwise and the mixture was gradually allowed to warm to room temperature overnight. The solution was acidified with HCl (6 M) and stirred for 3 h, and then the solvents were removed in vacuo. The residue was diluted with water, basified with K2-CO₃, and extracted with dichloromethane. The organic layers were combined, washed with brine, dried (MgSO₄), and concentrated in vacuo. The product was purified by flash chromatography by gradually switching the eluent from ethyl acetate to ethyl acetate/ methanol (9/1) to afford 2.94 g (40%) of product as a mixture of the 4- and 5-isomers (10:90). ¹H NMR (CDCl₃): δ 1.70 (m, 4H, central CH_2 's 4- + 5-isomer), 1.93 (s, 1H, OH, 4- + 5-isomer), 2.60 + 2.75 (t, 2H, imidazole-5(4)-CH₂, 4- + 5-isomer), 2.80 + 2.85 (s, 6H, N(CH₃)₂, 4- + 5-isomer), 3.65 (t, 2H, CH₂OH 4- + 5-isomer), 6.80 + 6.92 (s, 1H, imidazole-4(5)H, 4- + 5-isomer), 7.80 + 7.85 (s, 1H, imidazole-2H, 4- + 5-isomer).

5(4)-(4-Oxobutyl)imidazole-1-sulfonic Acid Dimethylamide (7). A solution of oxalyl chloride (2.27 g, 0.018 mol) in anhydrous

dichloromethane (DCM) (50 mL) was cooled to -60 °C. A solution of DMSO (2.79 g, 0.036 mol) in anhydrous dichloromethane (10 mL) was added dropwise. After stirring for 10 min, a solution of 5 (2.94 g, 0.012 mol) in dichloromethane (15 mL) was added dropwise. After additional stirring for 15 min, triethylamine (9.03 g, 0.089 mol) was added. The mixture was allowed to warm to room temperature and poured into water. The aqueous layer was extracted with dichloromethane, and the combined organic layers were washed successively with dilute sodium carbonate (5%), water, and brine and then dried (MgSO₄) and concentrated in vacuo to yield 2.72 g (93%) of product as a mixture of the 4- and 5-isomers (12.5:87.5). ¹H NMR (CDCl₃): δ 1.95 (m, 4H, central CH₂'s, 4-+ 5-isomer), 2.50 (m, 2H, CH₂CHO 4- + 5-isomer), 2.70 (t, 2H, imidazole-5(4)- CH_2 , 4- + 5-isomer), 2.78 + 2.82 (s, 6H, N(CH_3)₂, 4- + 5-isomer), 6.78 + 6.90 (s, 1H, imidazole-4(5)H, 4- + 5-isomer), 7.75 + 7.80 (s, 1H, imidazole-2H, 4- + 5-isomer), 9.70 + 9.75 (t, 1H, CHO 4- + 5-isomer).

5-Hydroxypentanoic Acid Methyl Ester (12). δ -Valerolactone (47.17 g, 0.47 mol) in methanol (300 mL) and concentrated H₂-SO₄ (4 mL) was heated to reflux for 16 h. The mixture was cooled to room temperature and the solvent was removed in vacuo. The residue was dissolved in dichloromethane, washed three times with a saturated solution of NaHCO₃, dried over MgSO₄, and evaporated to dryness, yielding 46.91 g (76%) of product. ¹H NMR (CDCl₃): δ 1.48–1.80 (m, 4H, central CH₂'s), 2.30 (m, 2H, CH₂COOCH₃), 3.58 (m, 3H, CH₂OH + CH₃OCO).

4-[4-(Toluene-4-sulfonyl)-4,5-dihydrooxazol-5-yl]butyric Acid Methyl Ester (16). To a stirred suspension of tosyl methyl isocyanide (TosMIC) (49.68 g, 0.25 mol) and 14 (33.15 g, 0.25 mol) in absolute ethanol (800 mL) was added finely powdered sodium cyanide (1.24 g, 0.025 mol). The yellow-orange suspension was stirred for 30 min, filtered, and washed with hexane/ether (1: 1), to give 40.06 g (49%) of product. ¹H NMR (CDCl₃): δ 1.75 (m, 4H, 2 × CH₂), 2.36 (m, 2H, 1 × CH₂), 2.46 (s, 3H, *p*-CH₃), 3.55 (s, 3H, CH₃OCO), 4.79 (d, 1H, oxazoline-4H), 5.05 (q, 1H, oxazoline-5H), 6.95 (s, 1H, oxazoline-2H), 7.35 (d, 2H, 2,6-phenyl-H), 7.80 (d, 2H, 3,5-phenyl-H).

4-(1H-Imidazol-4-yl)butyric Acid Ethyl Ester (18). In a resealable pressure tube, a solution of 16 in absolute ethanol saturated with ammonia was heated between 120 and 140 °C. After 20 h the reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The residue (45.67 g) was dissolved in HCl (37%, 300 mL) and heated to reflux for 16 h. The mixture was cooled to room temperature, evaporated to dryness, dissolved in water, washed with ether, then concentrated in vacuo. The residue in ethanol (300 mL) and concentrated H₂SO₄ (ca. 3 mL) was heated to reflux. After 16 h the mixture was cooled to room temperature and evaporated to dryness. The residue was dissolved in water and washed with ether, and then the water layer was basified with NaHCO₃ and extracted with dichloromethane. The combined organic extracts were dried over MgSO₄ and evaporated in vacuo, yielding 18.46 g (82%) of product. ¹H NMR (CDCl₃): δ 1.20 (t, 3H, CH₃CH₂OCO), 1.95 (m, 2H, central CH₂), 2.32 (t, 2H, CH₂-COO), 2.62 (t, 2H, imidazole-CH₂), 4.05 (q, 2H, CH₃CH₂OCO), 6.78 (s, 1H, imidazole-5H), 7.65 (s, 1H, imidazole-2H), 10.08 (s, 1H, imidazole-NH).

4-(1-Trityl-1*H***-imidazol-4-yl)butyric Acid Ethyl Ester (20).** Compound **18** (15.20 g, 0.083 mol) was dissolved in dichloromethane (200 mL). Triphenylmethyl chloride (23.03 g, 0.083 mol) in dichloromethane (200 mL) was added dropwise, followed by triethylamine (17.18 mL, 0.12 mol). The reaction mixture was stirred at room temperature overnight, and then it was washed successively with an aqueous solution of K₂CO₃ (1 M) and water. The organic layer was dried over MgSO₄ and then concentrated under reduced pressure to give 34.22 g (97%) of product. ¹H NMR (CDCl₃): δ 1.20 (t, 3H, CH₃CH₂OCO), 1.95 (m, 2H, central CH₂), 2.30 (t, 2H, CH₂COO), 2.55 (t, 2H, imidazole-CH₂), 4.05 (q, 2H, CH₃CH₂OCO), 6.50 (s, 1H, imidazole-5H), 7.00–7.38 (m, 16H, imidazole-2H + Ph₃C).

4-(1-Trityl-1*H*-imidazol-4-yl)butan-1-ol (22). A suspension of 20 (34.22 g, 0.081 mol) in THF (200 mL) was added, with efficient

stirring, to an ice-cold suspension of LiAlH₄ (3.06 g, 0.081 mol) in THF (50 mL). The reaction mixture was stirred for 15 min at room temperature. Next, water (5 mL), followed by saturated K₂-CO₃ solution (5 mL), was added dropwise. The suspension was filtered and concentrated in vacuo to afford 25.81 g (84%) of product. ¹H NMR (CDCl₃): δ 1.50–1.78 (m, 4H, central CH₂'s), 2.50 (t, 2H, imidazole-CH₂), 3.58 (t, 2H, CH₂OH), 6.50 (s, 1H, imidazole-5H), 7.00–7.40 (m, 16H, imidazole-2H + Ph₃C).

General Procedures for the Synthesis of the Protected Aminoalkylimidazoles 10c,m, 11c,d,i,m, 26b,d–l,n–p, and 27b,e–h,j–l,n–p. Method A. One equivalent of 9^{72} was mixed with 3 equiv of the appropriate amine and heated at 100 °C. After 48 h, the excess amine was evaporated under reduced pressure and the residue purified by flash chromatography (starting with ethyl acetate/methanol (9/1) as eluent and gradually switching to methanol and methanol/ammonia (95/5) for elution of the product).

Method B (Reductive Amination). One equivalent of the required aldehyde (7, 8, 24, or 25) was stirred for 10 min with the appropriate amine (3 equiv in the case of primary amines, 1 equiv in the case of secondary amines) and 1 equiv of acetic acid in dichloroethane (DCE) at room temperature. Then 1.5 equiv of sodium triacetoxyborohydryde was added and the mixture stirred overnight. Water was added and the reaction stirred for 15 min. Dichloroethane was removed in vacuo, and the residue was basified with K_2CO_3 and extracted with chloroform. The combined organic layers were washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was then purified by flash chromatography as described in method A.

5(4)-(4-Propylaminobutyl)imidazole-1-sulfonic Acid Dimethylamide (10c). Method B with aldehyde **7** and *n*-propylamine yielded 0.49 g (30%) as a mixture of 4- and 5-isomers (9:91). ¹H NMR (CDCl₃): δ 0.82 (t, 3H, CH₃ 4- + 5-isomer), 1.30–1.72 (m, 6H, CH₂CH₂CH₃ 4- and 5-isomer + central CH₂'s, 4- and 5-isomer), 2.40–2.60 (m, 4H, CH₂NHCH₂ 4- + 5-isomer), 2.68 (t, 2H, imidazole-5(4)-CH₂, 4- + 5-isomer), 2.78 + 2.82 (s, 6H, N(CH₃)₂, 4- + 5-isomer), 6.78 + 6.88 (s, 1H, imidazole-4(5)H, 4- + 5-isomer), 7.72 + 7.78 (s, 1H, imidazole-2H, 4- + 5-isomer).

5(4)-(5-Isopropylaminopentyl)imidazole-1-sulfonic Acid Dimethylamide (11d). Method A with compound **9** and isopropylamine yielded 1.50 g (36%). ¹H NMR (CDCl₃): δ 1.44–1.53 (m, 10H, (CH₃)₂CH + 2 × CH₂), 1.57–1.75 (m, 2H, 1 × CH₂), 1.81– 2.01 (m, 2H, 1 × CH₂), 2.68 (t, 2H, imidazole-5(4)-CH₂), 2.82– 2.92 (m, 9H, CH₂NH + N(CH₃)₂ + CH(CH₃)₂), 6.79 (s, 1H, imidazole-4(5)H), 7.82 (s, 1H, imidazole-2H).

General Procedures for the Deprotection of the Final Aminoalkylimidazoles 1b-p and 2b-p. Method C (Removal of the Trityl Group). One equivalent of the protected aminoalkylimidazole was mixed with 10 equiv of hydrochloric acid (1 N) (1b,dl,n-p and 2b,e-h,k,l,n-p) or hydrobromic acid (1 N) (2j) and the mixture was heated under reflux. After 2 h the mixture was cooled, washed with diethyl ether, and concentrated in vacuo. The salt was either washed with diethyl ether, recrystallized from ethanol/ethyl acetate or ethanol/diethyl ether, or converted into the oxalic acid or L-(+)-tartaric acid salt according to the following procedure. The residue was dissolved in water, basified with K₂-CO₃, and extracted with CHCl₃. The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The free base was dissolved in ethyl acetate with a few drops of methanol and then added dropwise to a solution of 2 equiv of oxalic acid dihydrate or L-(+)-tartaric acid in ethyl acetate/methanol. The precipitate was collected by filtration.

Method D (Removal of the Dimethylsulfamoyl Group). The same procedure as described in method A was adopted, but 30% HBr (1c,m and 2c,d,i,m) was used and the mixture was refluxed for 16 h. The dihydrobromic acid salt was either washed with diethyl ether, recrystallized from ethanol/ethyl acetate or ethanol/ diethyl ether, or converted into the oxalic acid or tartaric acid salt as described above.

Ethyl[4-(1*H***-imidazol-4-yl)butyl]amine Oxalic Acid Salt (1b).** Method C yielded 0.011 g (20%) of a white powder. Mp: 135–137 °C. ¹H NMR (D₂O): δ 1.20 (t, 3H, CH₃CH₂), 1.58–1.85 (m, 4H, central CH_2 's), 2.70 (m, 2H, imidazole- CH_2), 2.90–3.18 (m, 4H, CH_2 NH CH_2), 7.20 (s, 1H, imidazole-5H), 8.55 (s, imidazole-2H). Anal. ($C_9H_{17}N_3$ ·2 $C_2H_2O_4$) C, H, N.

[4-(1*H*-Imidazol-4-yl)butyl]propylamine Oxalic Acid Salt (1c). Method D yielded 0.46 g (77%) of a white powder. Mp: 156– 158 °C. ¹H NMR (D₂O): δ 0.90 (t, 3H, CH₃CH₂CH₂), 1.50–1.80 (m, 6H, CH₃CH₂CH₂ + central CH₂'s), 2.72 (t, 2H, imidazole-CH₂), 2.85–3.15 (m, 4H, CH₂NHCH₂), 7.19 (s, 1H, imidazole-5H), 8.50 (s, imidazole-2H). Anal. (C₁₀H₁₉N₃•1.5C₂H₂O₄•1.5H₂O) C, H, N.

Acknowledgment. The authors thank Dr. T. Lovenberg, Johnson & Johnson Pharmaceutical Research and Development, San Diego, CA, for the cells stably expressing the human histamine H_3 and H_4 receptors.

Supporting Information Available: Elemental analyses for all compounds, experimental details, data for compounds 6, 8, 13–15, 17, 19, 21, 23–25, 10m, 11c,i,m, 26b,d–l, 26n–p, 27b,e–h, 27j–l,n–p, 1d–p, 2b–p, and ¹H NMR and LC–MS spectra from 1f and 2d. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Leurs, R.; Smit, M. J.; Timmerman, H. Molecular Pharmacological Aspects of Histamine Receptors. *Pharmacol. Ther.* 1995, 66, 413– 463.
- (2) Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L. International Union of Pharmacology. XIII. Classification of Histamine Receptors. *Pharmacol. Rev.* **1997**, *49*, 253–278.
- (3) Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G. Cloning and Functional Expression of the Human Histamine H₃ Receptor. *Mol. Pharmacol.* **1999**, *55*, 1101–1107.
- (4) Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. I. Molecular Cloning and Characterization of a Novel Type of Histamine Receptor Preferentially Expressed in Leukocytes. *J. Biol. Chem.* 2000, 275, 36781–36786.
- (5) Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Auto-Inhibition of Brain Histamine Release Mediated by a Novel Class (H₃) of Histamine Receptors. *Nature London* **1983**, *302*, 832–837.
- (6) Lovenberg, T. W.; Pyati, J.; Chang, H.; Wilson, S. J.; Erlander, M. G. Cloning of Rat Histamine H₃ Receptor Reveals Distinct Species Pharmacological Profiles. *J. Pharmacol. Exp. Ther.* 2000, 293, 771–778.
- (7) Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Autoregulation of Histamine Release in Brain by Presynaptic H₃ Receptors. *Neuro-science* **1985**, *15*, 553–562.
- (8) Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Autoinhibition of Histamine Synthesis Mediated by Presynaptic H₃ Receptors. *Neuroscience* **1987**, 23, 149–157.
- (9) Clapham, J.; Kilpatrick, G. J. Histamine H₃ Receptors Modulate the Release of [³H]-Acetylcholine from Slices of Rat Entorhinal Cortex: Evidence for the Possible Existence of H₃ Receptor Subtypes. *Br. J. Pharmacol.* **1992**, *107*, 919–923.
- (10) Yokotani, K.; Murakami, Y.; Okada, S.; Wang, M.; Nakamura, K. Histamine H₃ Receptor-mediated Inhibition of Endogenous Acetylcholine Release from the Isolated, Vascularly Perfused Rat Stomach. *Eur. J. Pharmacol.* 2000, 392, 23–29.
- (11) Schlicker, E.; Fink, K.; Detzner, M.; Gothert, M. Histamine Inhibits Dopamine Release in the Mouse Striatum via Presynaptic H₃ Receptors. J. Neural Transm. Gen. Sect. **1993**, 93, 1–10.
- (12) Schlicker, E.; Schunack, W.; Gothert, M. Histamine H₃ Receptormediated Inhibition of Noradrenaline Release in Pig Retina Discs. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1990**, *342*, 497–501.
- (13) Schlicker, E.; Betz, R.; Gothert, M. Histamine H₃ Receptor-mediated Inhibition of Serotonin Release in the Rat Brain Cortex. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1988**, *337*, 588–590.
- (14) Krause, M.; Stark, H.; Schunack, W. Medicinal Chemistry of Histamine H₃ Receptor Agonists. *The Histamine H₃ Receptor, A Target for New Drugs*; Elsevier: Amsterdam, 1998.
- (15) Onodera, K.; Watanabe, T. Histamine H₃ Antagonists as Potential Therapeutics in the CNS. *The Histamine H₃ Receptor, A Target for New Drugs*; Elsevier: Amsterdam, 1998.
- (16) Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H. Therapeutic Potential of Histamine H₃ Receptor Agonists and Antagonists. *Trends Pharm. Sci.* **1998**, *19*, 177–183.

- (17) Miyazaki, S.; Imaizumi, M.; Onodera, K. Effects of Thioperamide, a Histamine H₃ Antagonist, on a Scopolamine-Induced Learning Deficit Using an Elevated Plus-Maze Test in Mice. *Life Sci.* 1995, 57, 2137–2144.
- (18) Onodera, K.; Miyazaki, S.; Imaizumi, M.; Stark, H.; Schunack, W. Improvement by FUB 181, a Novel Histamine H₃-Receptor Antagonist, of Learning and Memory in the Elevated Plus-maze Test in Mice. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1998**, *357*, 508– 513.
- (19) Passani, M. B.; Cangioli, I.; Bacciottini, L.; Mannaioni, P. F. Thioperamide and Cimetidine Modulate Acetylcholine Release from the Amygdala of Freely Moving Rats. *Inflamm. Res.* 2000, 49, S43– 44.
- (20) Yokoyama, H.; Onodera, K.; Iinuma, K.; Watanabe, T. Effect of Thioperamide, a Histamine H₃ Receptor Antagonist, on Electrically Induced Convulsions in Mice. *Eur. J. Pharmacol.* **1993**, *234*, 129– 133.
- (21) Yokoyama, H.; Onodera, K.; Maeyama, K.; Sakurai, E.; Iinuma, K.; Leurs, R.; Timmerman, H.; Watanabe, T. Clobenpropit (VUF 9153), a New Histamine H₃ Receptor Antagonists, Inhibits Electrically Induced Convulsions in Mice. *Eur. J. Pharmacol.* **1994**, *260*, 23– 28.
- (22) Schlicker, E.; Marr, I. The Moderate Affinity of Clozapine at H₃ Receptors Is Not Shared by Its Two Major Metabolites and by Structurally Related and Unrelated Atypical Neuroleptics. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1996**, *353*, 290–294.
- (23) Pillot, C.; Ortiz, J.; Heron, A.; Ridray, S.; Schwartz, J.-C.; Arrang, J. M. Cyproxifan, a Histamine H₃ Antagonist/Inverse Agonist, Potentiates Neurochemical and Behavioral Effects of Haloperidol in the Rat. *J. Neurosci.* 2002, *22*, 7272–7280.
- (24) Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic Neuronal Histamine: Implications of Its Homeostatic Control of Energy Metabolism. *Nutrition* **1997**, *13*, 403–411.
- (25) Takahashi, K.; Suwa, H.; Ishikawa, T.; Kotani, H. Targeted Disruption of H₃ Receptors Results in Changes in Brain Histamine Tone Leading to an Obese Phenotype. J. Clin. Invest. 2002, 110, 1791–1799.
- (26) Bray, G. A.; Tartaglia, L. A. Medicinal Strategies in the Treatment of Obesity. *Nature* 2000, 404, 672–677.
- (27) Levi, R.; Smith, N. C. Histamine H₃ Receptors: A New Frontier in Myocardial Ischemia. J. Pharmacol. Exp. Ther. 2000, 292, 825– 830.
- (28) McLeod, R. L.; Aslanian, R.; Del Prado, M.; Duffy, R.; Egan, R. W.; Kreutner, W.; McQuade, R.; Hey, J. A. Sch 50971, an Orally Active Histamine H₃ Receptor Agonist, Inhibits Central Neurogenic Vascular Inflammation and Produces Sedation in the Guinea Pig. *J. Pharmacol. Exp. Ther.* **1998**, 287, 43–50.
- (29) Bertaccini, G.; Coruzzi, G.; Poli, E. The Histamine H₃ Receptor: A Novel Prejunctional Receptor Regulating Gastro-Intestinal Function. *Aliment Pharmacol. Ther.* **1991**, *5*, 585–591.
- (30) Mignot, E.; Taheri, S.; Nishino, S. Emerging Therapeutic Targets for Sleep Disorders. *Nature Neurosci.* **2002**, *5*, 1071–1075.
- (31) Costa, T.; Ogino, Y.; Munson, P. J.; Onaran, O.; Rodbard, D. Drug Efficacy at Guanine Nucleotide-Binding Regulatory Protein-Linked Receptors: Thermodynamics Interpretation of Negative Antagonism and of Receptor Activity in the Absence of Ligand. *Mol. Pharmacol.* 1992, 41, 549–560.
- (32) Lefkowitz, R. L.; Cotecchia, S.; Samama, P.; Costa, T. Constitutive Activity of Receptors Coupled to Guanine Nucleotide Regulatory Proteins. *Trends Pharmacol. Sci.* **1993**, *14*, 303–307.
- (33) Milligan, G.; Bond, R. A.; Lee, M. Inverse Agonism: Pharmacological Curiosity or Potential Therapeutic Strategy? *Trends Pharmacol. Sci.* **1995**, *16*, 10–13.
- (34) Leurs, R.; Smit, M. J.; Alewijnse, A. E.; Timmerman, H. Agonistindependent Regulation of Constitutively Active G-protein Coupled Receptors. *Trends Biochem. Sci.* **1998**, *23*, 418–422.
- (35) Leurs, R.; Rodriguez Pena, M. S.; Bakker, R. A.; Alewijnse, A. E.; Timmerman, H. Constitutive Activity of G-protein Coupled Receptors and Drug Action. *Pharm. Acta Helv.* **2000**, *74*, 327–331.
- (36) Milligan, G. Constitutive Activity and Inverse Agonists of G Protein-Coupled Receptors: A Current Perspective. *Mol. Pharmacol.* 2003, 64, 1271–1276.
- (37) Smit, M. J.; Leurs, R.; Alewijnse, A. E.; Blauw, J.; Van Nieuw Amerongen, G. P.; Van de Vrede, Y.; Roovers, E.; Timmerman, H. Inverse Agonism of Histamine H₂ Antagonists Accounts for Upregulation of Spontaneously Active Histamine H₂ Receptors. *Proc. Natl. Acad. Sci.* **1996**, *93*, 6802–6807.
- (38) Bakker, R. A.; Wieland, K.; Timmerman, H.; Leurs, R. Constitutive Activity of the Histamine H₁ Receptor Reveals Inverse Agonism of Histamine H₁ Receptor Antagonists. *Eur. J. Pharmacol.* 2000, 381, R5–R7.

- (39) Govoni, M.; Bakker, R. A.; van de Wetering, I.; Smit, M. J.; Menge, W. M. B. P.; Timmerman, H.; Elz, S.; Schunack, W.; Leurs, R. Synthesis and Pharmacological Identification of Neutral Histamine H₁-Receptor Antagonists. *J. Med. Chem.* **2003**, *46*, 5812–5824.
- (40) Morisset, S.; Rouleau, A.; Ligneau, X.; Gbahou, F.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C. R.; Schwartz, J. C.; Arrang, J. M. High Constitutive Activity of Native H₃ Receptors Regulates Histamine Neurons in Brain. *Nature* **2000**, *408*, 860–864.
- (41) Wieland, K.; Bongers, G.; Yamamoto, Y.; Hashimoto, T.; Yamatodani, A.; Menge, W. M. P. B.; Timmerman, H.; Lovenberg, T. W.; Leurs, R. Constitutive Activity of Histamine H₃ Receptors Stably Expressed in SK-N-MC Cells: Display of Agonism and Inverse Agonism by H₃ Antagonists. J. Pharmacol. Exp. Ther. 2001, 299, 908–914.
- (42) Drutel, G.; Peitsaro, N.; Karlstedt, K.; Wieland, K.; Smit, M. J.; Timmerman, H.; Panula, P.; Leurs, R. Identification of Rat H₃ Receptor Isoforms with Different Brain Expression and Signaling Properties. *Mol. Pharmacol.* **2001**, *1*, 1–8.
- (43) Vollinga, R. C.; Menge, W. M. P. B.; Leurs, R.; Timmerman, H. New Analogues of Burimamide as Potent and Selective Histamine H₃ Receptor Antagonists: The Effect of Chain Length Variation of the Alkyl Spacer and Modifications of the *N*-Thiourea Substituent. *J. Med. Chem.* **1995**, *38*, 2244–2250.
- (44) Vollinga, R. C.; Menge, W. M. P. B.; Leurs, R.; Timmerman, H. Homologues of Histamine as Histamine H₃ Receptor Antagonists: A New Potent and Selective H₃ Antagonist, 4(5)-(5-Aminopentyl)-1H-imidazole. J. Med. Chem. **1995**, 38, 266-271.
- (45) Ngochindo, R. I. 2-Protecting Groups for 5-Lithiation in the Syntheses of Imidazoles. J. Chem. Soc., Perkin Trans. 1 1990, 6, 1645–1648.
- (46) Mancuso, A. J.; Swern, D. Activated Dimethyl Sulfoxide: Useful Reagents for Synthesis. *Synthesis* 1981, 165–185.
- (47) Omura, K.; Swern, D. Oxidation of Alcohols by "Activated" Dimethyl Sulfoxide. A Preparative, Steric and Mechanistic Study. *Tetrahedron* 1978, 34, 1651–1660.
- (48) Abdel-Magid, A. F.; Maryanoff, C. A.; Carson, K. G. Reductive Amination of Aldehydes and Ketones by Using Sodium Triacetoxyborohydride. *Tetrahedron Lett.* **1990**, *31*, 5595–5598.
- (49) Horne, D. A.; Yakushijin, K.; Büchi, G. A Two-Step Synthesis of Imidazoles from Aldehydes Via 4-Tosyloxazolines. *Heterocycles* 1994, 39, 139–153.
- (50) Liu, C.; Ma, X. J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Cloning and Pharmacological Characterization of a Fourth Histamine Receptor (H₄) Expressed in Bone Marrow. *Mol. Pharmacol.* 2001, *59*, 420–426.
- (51) Kitbunnadaj, R.; Zuiderveld, O. P.; De Esch, I. J. P.; Vollinga, R. C.; Bakker, R. A.; Lutz, M.; Spek, A. L.; Cavoy, E.; Deltent, M.-F.; Menge, W. M. P. B.; Timmerman, H.; Leurs, R. Synthesis and Structure–Activity Relationships of Conformationally Constrained Histamine H₃ Receptor Agonists. J. Med. Chem. 2003, 46, 5445–5457.
- (52) Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein– Dye Binding. *Anal. Biochem.* **1976**, 72, 248–254.
- (53) De Esch, I. J. P.; Timmerman, H.; Menge, W. M. P. B.; Nederkoorn, P. H. J. A Qualitative Model for the Histamine H₃ Receptor Explaining Agonistic and Antagonistic Activity Simultaneously. *Arch. Pharm. Pharm. Med. Chem.* **2000**, *333*, 254–260.
- (54) Uveges, A. J.; Kowal, D.; Zhang, Y.; Spangler, T. B.; Dunlop, J.; Semus, S.; Jones, P. G. The Role of Transmembrane Helix 5 in Agonist Binding to the Human H₃ Receptor. *J. Pharmacol. Exp. Ther.* 2002, 301, 451–458.
- (55) Van der Werf, J. F.; Bast, A.; Bijloo, G. J.; Van der Vliet, A.; Timmerman, H. HA Autoreceptor Assay with Superfused Slices of Rat Brain Cortex and Electrical Stimulation. *Eur. J. Pharmacol.* 1987, *138*, 199–206.
- (56) Schwartz, J.-C.; Arrang, J.-M.; Garbarg, M.; Schunack, W. Innovative Approaches in Drug Research; Elsevier: Amsterdam, 1986; pp 73– 89.
- (57) Stark, H.; Lipp, R.; Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C.; Schunack, W. Acylated and Alkylated Histamine Derivatives as New Histamine H₃-receptor Antagonists. *Eur. J. Med. Chem.* **1994**, *29*, 695–700.
- (58) Van der Goot, H.; Schepers, M. J. P.; Sterk, G. J.; Timmerman, H. Isothiourea Analogues of Histamine as Potent Agonists or Antagonists of the Histamine H₃-Receptor. *Eur. J. Med. Chem.* **1992**, *27*, 511– 517.
- (59) Arrang, J. M.; Garbarg, M.; Lancelot, J. C.; Lecomte, J. M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J. C. Highly Potent and Selective Ligands for Histamine H₃-Receptors. *Nature* **1987**, *327*, 117–123.

- (60) Leurs, R.; Kathmann, M.; Vollinga, R. C.; Menge, W. M. B. P.; Schlicker, E.; Timmerman, H. Histamine Homologues Discriminating between Two Functional H₃ Receptor Assay. Evidence for H₃ Receptor Heterogeneity? *J. Pharm. Exp. Ther.* **1996**, *276*, 1009– 1015.
- (61) Fox, G. B.; Bao Pan, J.; Esbenshade, T. A.; Bennani, Y. L.; Black, L. A.; Faghih, R.; Hancock, A. A.; Decker, M. W. Effects of Histamine H₃ Receptor Ligands GT-2331 and Cyproxifan in a Repeated Acquisition Avoidance Response in the Spontaneously Hypertensive Rat Pup. *Behav. Brain Res.* 2002, 131, 151–161.
- (62) Tedford, C. E.; Phillips, J. G.; Gregory, R.; Pawlowski, G. P.; Fadnis, L.; Khan, A.; Ali, S. M.; Handley, M. K.; Yates, S. L. Development of *trans*-2-[1*H*-Imidazol-4-yl] Cyclopropane Derivatives as New High-Affinity Histamine H₃ Receptor Ligands. *J. Pharm. Exp. Ther.* **1999**, 289, 1160–1168.
- (63) Gbahou, F.; Rouleau, A.; Morisset, S.; Parmentier, R.; Crochet, S.; Lin, J.-S.; Ligneau, X.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C. R.; Schwartz, J.-C.; Arrang, J.-M. Protean Agonism at Histamine H₃ Receptors in Vitro and in Vivo. *Proc. Natl. Acad. Sci.* 2003, *100*, 11086–11091.
- (64) Nakamura, T.; Itadani, H.; Hikada, Y.; Ohta, M.; Tanaka, K. Molecular Cloning and Characterization of a New Histamine Receptor, *H4R. Biochem. Biophys. Res. Commun.* 2000, 279, 615–620.
- (65) Morse, K. L.; Behan, J.; Laz, T. M.; West, R. E. J.; Greenfeder, S. A.; Anthes, J. C.; Umland, S.; Wan, Y.; Hipkin, R. W.; Gonsiorek, W.; Shin, N.; Gustafson, E. L.; Qiao, X.; Wang, S.; Hedrick, J. A.; Greene, J.; Bayne, M.; Monsma, F. J. J. Cloning and Characterization of a Novel Human Histamine Receptor. J. Pharm. Exp. Ther. 2001, 296, 1058–1066.
- (66) Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. Discovery of a Novel Member of the Histamine Receptor Family. *Mol. Pharmacol.* **2001**, *59*, 427–433.

- (67) Zhu, Y.; Michalovich, D.; Wu, H. L.; Tan, K. B.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Altson, J.; Tierney, L. A.; Li, X.; Herrity, N. C.; Vawter, L.; Sarau, H. M.; Ames, R. S.; Davenport, C. M.; Hieble, J. P.; Wilson, S.; Bergsma, D. J.; Fitzgerald, L. R. Cloning, Expression, and Pharmacological Characterization of a Novel Human Histamine Receptor. *Mol. Pharmacol.* **2001**, *59*, 434–441.
- (68) Hough, L. B. Genomics Meets Histamine Receptor: New Subtypes, New Receptors. *Mol. Pharmacol.* 2001, 59, 415–419.
- (69) Guan, J.; Kyle, D. E.; Gerena, L.; Zhang, Q.; Milhous, W. K.; Lin, A. J. Design, Synthesis, and Evaluation of New Chemosensitizers in Multi-Drug-Resistant *Plasmodium falciparum*. J. Med. Chem. 2002, 45, 2741–2748.
- (70) Ames, D. E.; Islip, P. J. Syntheses of Long-chain Acids. Part IV. Synthesis of the Octadeca-5,12-dienoic Acids. J. Chem. Soc. 1963, 4363–4368.
- (71) Rumbero, A.; Borreguero, I.; Sinisterra, J. V.; Alcantara, A. R. Acyclic Phenylalkanediols as Substrates for the Study of Enzyme Recognition: Synthesis of Substrates and Enzymatic Resolution via Hydrolysis and Transesterification. *Tetrahedron* **1999**, *55*, 14947– 14960.
- (72) Vollinga, R. C.; Menge, W. M. B. P.; Timmerman, H. A New Convenient Route for the Synthesis of 4(5)-(ω-Aminoalkyl)-1H-Imidazoles. *Recl. Trav. Chim. Pays-Bas* **1993**, *112*, 123–125.
- (73) Hancok, A. A.; Fox, G. B. Perspectives on cognitive domains, H3 receptor ligands and neurological disease. *Expert Opin. Investig. Drugs* 2004, 13, 1237–1248.
- (74) Celanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; De Esch, I. J. P. Keynote Review: Histamine H(3) Receptor Antagonists Reach Out for the Clinic. *Drug Discovery Today* **2005**, 23–24, 1613–27.

JM0504353